Hierarchical clustering

School of Electrical and Computer Engineering

University of Tehran

Erfan Darzi

erfandarzi@ut.ac.ir

Today's lecture

- Hierarchical clustering algorithm
 - Bottom-up: agglomerative
 - Distance between clusters
 - Complexity analysis

Hierarchical clustering

- Build a tree-based hierarchical taxonomy from a set of instances
 - Dendrogram a useful tool to summarize

Agglomerative hierarchical clustering

Pairwise distance metric between instances

Agglomerative hierarchical clustering

- 1. Every instance is in its own cluster when initialized
- 2. Repeat until one cluster left Enumerate all the possibilities!
 - 1. Find the best pair of clusters to merge and break the tie arbitrarily

How to compare distance between an ? instance and a cluster of instances?

 Single link – Cluster distance = distance of two closest members between the clusters

$$-d(c_i,c_j) = \min_{x_n \in c_i, x_m \in c_j} d(x_n,x_m)$$
 Tend to generate scattered clusters

Complete link

 Cluster distance = distance of two farthest members between the clusters

Average link

Cluster distance = average distance of all pairs
 of members between the clusters

Agglomerative hierarchical clustering

- Every instance is in its own cluster when initialized
- 2. Repeat until one cluster left
 - 1. Find the best pair of clusters to merge and break the tie arbitrarily

Complexity analysis

• In step one, compute similarity between all pairs of nn individual instances - $OO(nn^2)$

- In the following nn-2 steps
 - It could be $OO(nn^2 \log nn)$ or even $OO(nn^3)$ (naïve implementation)

In k-means, we have OO(kknnkk), a much faster algorithm

Comparisons

- Hierarchical clustering
 - Efficiency: $OO(nn^3)$, slow

- Assumptions No assumption Only need distance metric
- Output
 - Dendrogram, a tree
- k-means clustering
 - Efficiency: OO(kknnkk), fast
- Assumptions
 - Strong assumption –

centroid, latent cluster

membership

- Need to specify kk
- Output
 - kk clusters

How to get final clusters?

- If kk is specified, find a cut that generates kk clusters
 - Since every time we only merge 2 clusters, such cut must exist

 If kk is not specified, use the same strategy as in k-means – Cross validation with internal or external validation

What you should know

- Agglomerative hierarchical clustering
 - Three types of linkage function Single link,
 complete link and average link

Comparison with k-means